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ABSTRACT

77 Based upon the existence and uniqueness of a solution to the linearized

Lundquist equations established previously, the modified energy principle for

the 0-stability of a confined toroidal plasma is rigorously justified. A

variational principle is developed to find the infimum o1- '-4, and an esti-

mate for the maximum growth rate is obtained. The results are also extended

to a diffuse pinch and a multiple tori plasma.
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SIGNIFICANCE AND EXPLANATION

In this report, we shall justify rigorously the so-called modified energy

principle for the o-stability of a confined toroidal plasma. Intuitively

speaking, a plasma is called a-stable if it does not grow faster than

exp(ot), where 0 = IT and T is some characteristic time needed for

fusion. The modified energy principle claims that the plasma is 0-stable if

some energy functional is nonnegative and unstable if otherwise. We develop a

method to get an upper bound for 0 and the maximum growth rate for the

plasma is also obtained. Furthermore the results are extended to the case

that the plasma fills up the whole conducting shell and that there are several

plasma tori in the conducting shell.
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STABILITY THEORY OF A CONFINED TOROIDAL PLASMA
PART II. MODIFIED ENERGY PRINCIPLE AND GROWTH RATE

*

Peter Laurence and M. C. Shen
t

J1. Introduction.

The MHD stability of a plasma equilibrium confined in a magnetic field is

one of the most important topics in controlled thermonuclear research. The

approach to this problem is very often based upon the linear energy principle

formulated by Berstein et. al. (1957). In the justification of the necessary

condition for stability, they assumed that the eigenfunctions of a certain

linear operator form a complete orthonormal basis. This assumption may limit

the scope of the linear energy principle in applications. Laval et. al. (1965)

relaxed this restriction and established a modified energy principle for the

so-called 0-stability of a confined plasma, including the linear energy

principle as a special case. However, in their derivation the existence of a

classical solution to the corresponding system of the linearized Lundquist

equations is tacitly assumed, and at present no such a solution is known to

exist. In this report we shall state and prove rigorously a precise version

of the modified energy principle, for a confined toroidal plasma, which is the

main contribution of our work. Our approach relies upon the existence of a

generalized solution to the linearized Lundquist equations we established in a

previous report, which we shall refer to as Part I.

Now at MFD Division, Courant Institute of Mathematical Sciences, New York
University, New York, NY 10012.
t
Department of Mathematics and Mathematics Research Center, University of

Wisconsin, Madison, WI 53706.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
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The contents of this report are briefly explained as follows. In Section

2, we present the rigorous proof of a precise version of the modified energy

principle for O-stability. A necessary and sufficient condition is given for

an equilibrium to be O-stable. The proof of the sufficiency essentially fol-

lows the results obtained in Part It that of the necessity needs some regular-

ity and embedding theorems by Lions and Magenes (1972). In Section 3, a vari-

ational principle is developed to find the infimum of a for 0-stability.

In Section 4, an estimate of the maximum growth rate is obtained. Finally, we

extend previous results to the cases of a diffusion pinch and a multiple tori

configuration in Section 5.
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S2. Necessity and Sufficiency of the Modified Energy Principle.

We begin with the definition of a-stability of a plasma equilibrium.

Definition An equilibrium is called a-stable if all solutions (9(t),A(t))

of the evolutionary variational problem EVP (16, Part I) have the property

that there exist some constant c > 0 and 0 such that

nc2
12,v < c exp 20t on [O,i).

We now prove

Theorem 2.1.

An equilibrium subject to the conditions of 13, Part I is a-stable if

and only if

+(a 2 1)+ 2 o, V(&,A) e W. (2.1)
a(( ,A,( ,A) a21 2,p

Proof:

To prove the sufficiency, assume that A(t) - (9(t),A(t)) is a solution

to the EVP with (C(O),A(0)) = A0 , t-(0 0 and prescribed flux

f A * n ds - U(t) (J6, Part I). As in 6, Part I, we associate with the
vth

EVP an auxiliary EVP (AEVP) for which we construct the m Galerkin

approximation and obtain (6.16), Part I as follows:

In(t)m2 + a((Mm, Am ),(&mn,A)) Im( 0 )1 2 + a(A(O), A )).
2,p + 02, p

Adding 0 2 . 2 to both sides and using (2.1) we get

Im(t)l 2  4 Im(O)l 2  + c lA(0)1 2 + 02 iWm()l 2  (2.2)2,P 2,p 1 2,p'

where c1  was defined after (6.16), Part I, from which we derive as in

passing from (6.20) to (1.22), Part I
im 2 1( 0 ) 1 2 + } e2at - b (2.3)

where

bm - m( 0 ) 1  + c 1 IAm(O)12

S!-3-



We let

b 1!I(O)I + c IA(O)12

and would like to pass to the limit in (2.3). Since the equilibrium satisfies

the assumptions in 13, Part 1, and by the coerciveness of a(e,), there

exist A, 6> 0, (where A > 0 2) such that

a((FC,A),(4,A)) + A 291 61(9,Aiw

Thus proceeding as in 16, Part I for the existence proof and using the remark

in 17, Part I, we have

m *t . (t) in La (LOOT) : L (91 )],
P p

I'(t) + t(t) in L 2 [10T) % L 2C (Q (2.4)
Pp

Also given the construction of our Galerkin approximations, ye have

&M("C), * UO) in L 2 (a
P p

I'(0) + J(O) in L 2(g1) (2.5)
P p

Am(O) + A(O) in w.

For K,s e L0,T], T > a, we now integrate both sides of (2.3) from a to

T and multiply both sides by 1/(T - a), to obtain

_I j'K*mt2 dt 4 1. f'~e 2 + e2 Ct d
T-8 2,P T-9 2l~~1P +- .x} U

We nov can pass to the limit on the R.li.S. becuas. of (2.4) and on the

L.H.S. we use NOl 4 lim influ nU1 valid for any weakly convergent sequence in

a Danach space, to obtain

I flI(t)I2 dt 4 1 JT{3 C(0 )j2 + b1. 2 @tdt If bdt (26

Noting that IF9(t)U 6, L 2 OOT] L I(0,T], we now let T + a on the

L.H.S., apply the Lebesque differentiation theorem [Rudin, 1974) there, which

states that the derivative of the integral of an LI function is theLI

function, and by explicit integration and differentiation on the R*H*S., we

-4-



obtain
i(l2  < 11)2 b .}20t b

t)21 ((0 1 2, -P + (2.7)

22,P
4C (M~O)I 2 +ke20

In addition, if we insert (2.7) into (2.2), we have

i E(t)l, + ,(0)2 0)12 + 2 + b )e2t 0 b

2, 2,P lw A{(l (O)12 , -'
bm. 20t

S+ (I ( O)
2  + - )e - b .
2,P 7

Upon going through the same procedure as between (2.5) and (2.6), we may pass

to the limit and obtain

2 ,It),2  C b + 2(,O)E2  + b 2+ t - b

2b. 20t:

+ Y~e(2.8)2,P

This establishes the sufficiency of (2.1).

Next we prove the necessity of the modified energy principle for

a-stability. We seek to show here that

a((+,A),(,_)) + < 02, P

for an element (i,A) a W, implies the existence of a solution of the YvP,

(C(t),A(t)), such that

1112 ) c exp 20t.

In the proof of this result the essential part is played by certain regu-

larity and embedding theorems of Lions and Magenes (1972), which are then

coupled with the original proof of Laval et. al. (1965) to yield the results.

We begin by slightly changing our point of view and noting that I(C,A)lW

defines a norm on P (W) which we will denote by ICI * This is clear
a p

since, given a p the boundary value problem

-5-



n x _ ( Bv o

n xA-Cn 0 )g on r

f A *n ds -0, (2.9)

determines A uniquely, and the dependence on 9 of A is linear.

Let W Be the dual space of W We seek to show that the following

formula holds. -2-(.0

at W W at2

2 at) at 2,P a2

vhere <0,> *denotes the action of the linear functional a- Cmt e v
WE XW at2

on 4(t) e w,, and vhere (C(t),A(t)) is a solution to the AWVP. We shall

also show thaL <t)4t> iaboueycniuuon [,.Nw
alo ho t at i (tt) 2 ,iP bouey otnoson (, o

a((9,A),(4,A)) defines a bilinear form on WE, which we shall denote by

a~,F)

In order to prove (2.9), note that since (Mt),A(t)) is a solution of

AEWP

< at2  U07w>+ + a44C)- 0, vC e w V.(.1

We now invoke a theorem of Lions and Magenes (1972). The solution of

(2.11) has the property

at 0yt) e c ((,T] : KC)

where H C denotes the closure in L 2(a ) Of WE, prvosydenoted by

P a(HQ Furthermore, there exist C (t) e c(10,T) WQ such that

(t)e C([OT] WE) and

-6-



Ct ()in C 0([O,T) V (2.12)

Mt + Ct) in C 0((0,TJ H) (2.13)

a 2Ct a2  ~ 2 (224
2 + ~t) inL (O,TJ Wat2t2(.4

we shall first assume that formula (2.10) holds for F~and show that it

holds for F, Integrating (2.10) from 0 to T, t G [0,T] we have

0 at2  
2,Pt-0

2fT< a C (t), a t>Pd,(,5

Now using (2.13) we may pass to the limit on the integral on the L.H.S. of

(2.14), and using (2.11) and (2.12) we may pass to the limit in the terms of

the R.H.S. Thus we obtain
aT 2  aIt=T

2 2< -- ~t,() * -I

0 at2 C~)Ct>W XW T-<~)Ct>,~=

-2 fT < C() (t)>2 dt.
02,

Again since all integrands, because of (2.12) to (2.14), are in L [0,T]

thus in L1(O,TI, Lebesgue's differentiation theorem allows us to differentiate

the integrals on both sides of (2.16) with respect to T and recover the

integrands, thus it follows that (2.10) holds and that a Ct'~)2Pi

* an absolutely continuous function on [0,TJ being equal to the integral of

an L1I function.

We now return to shov that (2.10) holds with F9 Ct) replacing 9(t).

* For this purpose we use an embedding theorem of Lions and IMagenes (1972) which

reduces to the following special form needed later.

-7-



If O(t) has the properties:

1) (t) Q L2 ((O,T) W

an22) at Q L2((0,T] WE) (2.18)

3) 2 T 2

at 2

then q(t) Q A C(O,T] :W

e AC([O,T] : HC). (2.19)

Moreover, if we let

2 au 2
X = {uju 6 L ([O,T) : WQ) -tC L ([0,T] W

0~ L 2([O,T] W

at

with norm

lNI X = lul 2  + lt,:4l

L2 ([0,T]:W*) at L2 ([0,T] : W)

+ I-2 1/2at 2 L 2( [0,T] :W )

then

C0 ([O,T] : W ) is dense in X.

Thus in particular C7([O,T] : WE ) is dense in X.

Given that C(t) satisfies the above conditions (cf. (2.12) to (2.14)),

we may take ( )nCt) 6 (Cm((0,T) : W + £(t) in X. Now starting with the

relation 2 e

IT )n 9 ) n t=T2< (t), (4cE ) (t)> . dt - <( )t,( n(t)>2,l.

0 2t 2  n Wt n 2,Pit-O

-2 t< (>) a (dt

for T 6 [O,T), and using (2.17), we may pass to the limit in the above

equation with the result

---



-T d< M, &(t)> t-T
2 ~dt ,j0

0 at2 (ti, Ct>2pt

--2 f% T~ < C(t), a CO > d

for t Q [0,T]. So we obtain (2.15) as desired. This concludes the proof

that (2.10) holds with M;(t replacing U;t). we now invoke another lemma

of Lions and Magenes (1972) which establishes that the energy equality

*3 2
1 4 + a(F;,F) -C (2.20)

at HF

holds for solutions (F,A)(t) to AEVP.

* The proof now proceeds almost identically to that of Laval et. al.

(1965). For completeness sake we present it here.

If 9;(t) is a solution of the AEVP defined by (2.11), then

- F(t),C( t)> * + a(;F)=02.1
at 2W Ex

holds because F;t) e Wt;.

If we make use of (2.9) and substitute for a(4;,1) from (2.19) into

(2.21), we obtain the vairial equation

-t 2 2 2 (.2
41 t( H 2 NE NH C.(2)

&I= 'ai 3-tt=o - (2.23)

Note that, with this choice of initial data, C in (2.22) is negative, so we

obtain

d -Kt,2 > a4F3C2 1,

dt 2  2,P #: 2, p on [,JIThus the same argument as from (6.20) to (6.21), Part 1, shows that

iF;t)E d, 2 dt 4 N2  on [0,T) (2.24)

Note also that, since according to (2.19) F;Mt 6 ACU(O,TJ HF) and

since IF;(0I - IF; * 0, if we choose T' < T small enough. 71a > 0 such

that

W01t) 2, > for t 6 [0,T'J. (.5

-9-



Thus in particular if we define
2

I (t j 2 ,p
y(t) - log 2 '

ie2,p

y(t) is absolutely continuous, since the logarithm is a Lipshitz function for

any possitive interval bounded away from zero, and since the composition of a

Lipshitz function with an absolutely continuous function is absolutely contin-

uous (Stampachia, 1966).

Similarly,

dt dt ,P 2,P

is, because of (2.19), the quotient of an absolutely continuous function and

an absolutely continuous function which is bounded away from zero, and hence

(Rudin, 1974) is absolutely continuous.

~Now (2.24) becomes

> 0 on [0,T' ),
dt 

2

with the initial conditions y - 0, - 20. Thus, since y(t) anddt
0 Ac(0,T' ] we may integrate this inequality and obtain
dt > 20, and y(t) > 20t for t 6 (0,T'), (2.25)

dt

the re fore,

> M(0)|2  exp 20t for t 6 [0,T']. (2.26)2,p2p

We now note that the condition (2.25) is clearly satisfied for all t > 0

by repeating the same argument, we obtain

m (t:01,2 > IcOI2 exp 20t.
2,P 2 P

This concludes our proof of Theorem 2.1.

-10-



13. Variational Principle

Earlier we established that a((C,A),(C,A)) is coercive with respect to

the W norm on W x W. There exist SA > 0 and 6 > 0 not necessarily

unique such that

+ A(9, 2 6I(CA)I 2 V(CA) e w.2, P w

In particular, A may be chosen so that

a(([,A),([,A)) + -XII 2  •0 (3.1)2,p

V(K,A) 9 W. (3.2)

We now show how to find the minimal A, X0, that ensures (3.2) by a

variational procedure.

We wish to find

inf a(,)(,) (3.3)

2
1F12 =1

2,p
(E,A)eW

As seen from (2.1), this infimum is finite. We now show that, although in

general there is no element (K,A) 6 W which realizes the infimum, we can

construct a sequence of vectors (K ,An) 6 W such that

a(( n,An ,( n,An)) . X + A0 An 0

We use again the skew orthonormal basis

ii i
1 2 1 2,p ij'

and define An ,A ) to be an element of W of the form
n

An - ((nAn) = n a i iA CA Iain (01 , 2 )  
1(3.4)

i-i

with 19n 12  = 1, for which the infimum of (3.3) is attained. That this

infimum is indeed reaalized by an element of W of the form (3.4) follows by

noting that

-11-



ni

n 2

Iin

so that the Gin vary over a compact set of dimension n. Since

a((Cn,An),(qn An) is a continuous function of 'int it attains both its

maximum and minimum and the minimum satisfies

a(An ,i). An( ni) 1 ( i n, (3.5)

n n(3.6)
A w a(A fA (3.6

The equation (3.5) holds because Vr > 0, VE of the form (3.4),

E = (E1 ,E2 ) such that

a(An + rE,An + rl) ) <n<Cn + rE ,n + E >
I 2,P

nn A ) r a(E,E) +2ra(An ,E) ), nA n >r 2, + Anr E, E >2,

+ 2A nr<(E1 >2,p"

Using

a(An,An) A n<,-,n> . A n

to cancel one term from both sides and then dividing by r and letting

r + O, we have

a(An,,) , n<,n, IE >2, p '

Therefore

aAn ,E)) ,n<,n ,El >2, p

follows from replacing E by -E in the above derivation. Now An is an

increasing sequence of real numbers since the infimum is taken over an

increasing sequence of sets. Moreover, by the coerciveness there exist A

such that

a An,) + AR~E I ,p 0

that is,

-12-
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n

Hence the sequence of (An) is bounded below and there exists A such that0
n + X0 '

where A0  may be negative. Moreover, by the coerciveness again, 6,02 > 0
0

such that a2 ) -AO,

a((&,A),(E,A)) + a2 > 6I(&,A)1 2 , (3.5)
w

2where 1E1 = 1. It follows that2,P

A A~

forms a bounded sequence in W, since

,n n),, nl + 2 2 n12
a(( n,An),( n,An)) + 0 O + 0 6(n,A w  n

Hence there exists a weakly convergent subsequence in W of the A n, and in

particular, of the En in gP(Q ). Unfortunately, without some additional

features of W ensuring compactness of the embedding of W in L2 (f ) xp

L 2( ), we may not conclude that the limit A is a genuine eigenfunction.V

We will not examine this question further here. In any case we have shown

a(AnAn) = An + +A0

n thwhere A is the solution to the n minimization problem discussed

above. Finally we have

Theorem 3.1.

inf a((&,A),(E,A)) A

UI1 =10
2,P

(E,A)6W
Proof:

inf a((,A),(&,A)) 4 A0

2 0

(&,A)eW

is clear since ( nnAn) is a collection of elements of W with

n2,P = 1.

-13-
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inf ((C,&),( ,A))) 0
inf )0

2.
({ ,A )GV

is shown by contradiction.

If

mnt a((F ,&),( ,N)) ( A' - C
2 -2 0

20
(9,A)eW

then there exists N > 0 such that for n > N

But this contradicts the defining property of An and the monotonicity of the

sequence An.

A consequence of (2.7) is the following:

Corollary.

a((C,A),(4,A)) - A )o 2 0 •0
0 2,P

I v(F ,&) S .

Proof:

Since

inf a((XA),(0,) = A0

it I22,p"1

(E,A)GW

a((C,A),(&,A)) - A 0 ) 0.

V(C,A) 0 V with ICI 2" a 1.

Now for arbitrary (M,A) Q W, consider

€A) 2 cFA)/n~n22,P

where 1I1 2 ThenL,2 (Rp) -

a(( A))- A0 )0 0.

However, due to the bilinearity of a(,,*)

' ' 2,p*

We obtain (2.9) by multiplying (2.10) by ItI 2

2,p*



14. Estimate of the Maximum Growth Rate.

In deriving the sufficiency of the modified energy principle in Theorem

2.1, we established that if 30 2  such that

a((&,A),(9,A)) + 0 I2 & ) 0, V(C,A) 6 W,

then any solution (C(t),A(t)) of the EVP on (0,) is subject to the

growth estimate

uu2 < c exp 20t on [0,m). (4.1)

In the process of proving the coerciveness of the bilinear form

a((4,A)(9,A)) (15, Part I), that is, .%,S > 0 such that

a((4,A),(C,A)) + Xn10 6n(C,A)iu, v(9,A) s W2,P.

we found that upper bounds on A could be given in terms of the constants

ei which characterize the equilibrium quantities p, B, V x B. However, in

15, Part 1, 6 on the R.H. S. of equation (5.16) was taken to be 1/2. We now

make note of what estimate is obtained for X when 8 0, since this is all

that is needed in order to obtain the growth estimate (4.1).

Thus we let fl and f2 in (5.15), Part I be such that

elf 1  M 1 e 3e4 f2  1

then 2 2
12 234ele 2  e 2 e 3 e 4

- +
4 4

is an upper bound for the maximum growth rate; or we make use of the more

precise estimate following from (5.13) and (5.14) in PartI,

), 12V x B x n • 8 * Vn|

L

is, again, an upper bound on the maximum growth rate.

4
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15. Diffuse Pinch and Multi-Tori Configuration.

In this section we extend the results of 13, Part I to two other

configurations of importance in thermonuclear research. One case deals with a

diffuse pinch and the other, a multiple tori plasma confined in a toroidal

shell.

In a diffuse pinch (Figure 1) the plasma extends to the confining

shell. The equations in the plasma region are the same as in 13, Part I; now

we only need to express them in Bulerian coordinates

pi - V(YpV * + * VP) + V x B x V X (C x B)) (5.1)

+ V X V X (9 X B) X B.

We impose the boundary condition on the confining shell that the normal

component of velocity on the shell is zero. By integration

* n - 0 on (5.2)

and we note that if (5.2) is satisfied then the perturbed magnetic field

B Vx ( X B)

automatically satisfies the boundary condition: 4

B " n - 0 on

because

n - 0-> n x(C x B) - 0 on

where B * n - 0 by our assumption on the equilibrium state, and

n x v - 0 -> n * V x v - 0 on

as can be easily seen by applying Stoke's theorem to infinitesimal loops on

the boundary.

We now present, in a somewhat condensed fashion, an existence and

uniqueness proof for a weak solution to the boundary value problem (5.1) to

(5.2) with initial conditions

U(o) - - (5.3)

-16-
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Figure 1

A Cross Section of the Diffuse Pinch



we shall make the following assumptions on the equilibrium quantities:

p, Vp a L 0

B " n - 0 on r.

Furthermore, we also assume ac 1 ,c 2 ,dl 1 d 2 > 0 such that

c 1 4 p(x) 4 c 2

d I 1 P(x) 4 d 2 .

If we take the inner product of (5.1) with [ where s satisfies the

boundary condition • n - 0 on r, we get

<PzC,>2,P f (Ypv. v. +Vx (x B) • V x x B)

2,P

- * V x B x (V x (t x B)) + ( V - C)( VP)dv

f I (9 * n)(YPVC - B - (V x C x B) - • VP~dS
r

-- f Yp(V 0 )(V ) + V x (C x B) • Vx (x x )

- - V X B X (V x (C X B)) + (V *)( * VP)dv.

Thus we define

- f Yp(V 9 4)(V ) + V x (Cx ) . V x (I x B)

p

- * V x B x (V x (C x B)) + (V • )(C • Vp)dv, (5.4)

and obtain

<Pz 2,P + a(C.j)- 0 V such that n- 0 on r.

Lot

V;- {- ( 6 HI(C)( • n) - 0),

with scalar product

I (YP(v • -)(V • [) (5.5)

+ p
+ V x (q; K B) • V x ( ' K ) +~ * • ) v
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and let

V -closure of V in II
V

All the properties related to volume integrals enjoyed by the first

components of elements of W (Cf. 14, Part I) also hold for elements of V

and the proofs are the same, that is

V L 2 2

V x ( x B) e L2(

9e L 2I M.

we now make use of a result in Temam (1973), noting that given (5.5),

3c > 0 such that,

Ice v 0 cII ,

so that if m is a Cauchy sequence in V-, with

Sm + in V,

then

n m + n in H- 1/2 (r).

Therefore, since n Cm - 0 in H- 1/2(F) (in fact in H1/2(F))),

n * C-0 in H 1/2(F).

All other aspects of the existence and uniqueness proofs are straight-

forward simplifications of those in J6, Part I, so we will not repeat them

here but only state the following

Theorem 5.1:

There exist a unique solution C(t) of the VP

(1) !2  <C(t),C> + a(4,1) - 0 VC 6 V,
a2 t 2,P

(2) C(0) - C0 e V, 40) - to G L

and

9(t) 0 C O([o,) : V),

DC 0 2(a)T_ •C ((0,_) I )
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One can easily verify that for the diffuse pinch the estimate

2 C + 1  2 22ot

2,p 82 2,p

holds, where

a 2  can be estimated from (5.13), Part 1,

2 2P x B x n - 8 ,, V
02= I n! LOb

L

If the plasma region, instead of consisting of one torus, is the union

of N non-intersecting tori with interior OPi, all enclosed in an outer

toroidal conducting shell (Figure 2) r,, the basic approach of Part I again

applies.

i i
In each connected plasma domain Op we search for M(t) such that

P (t) F(C) - V(YpV * + C Vp (5.6)

i i i i £ i
+ V x B x V x ( x B) + V x V x ( x B) x B.

In the vacuum region we gain require

V K V x A a0,

V x A 0.

In each plasma-vacuum interface r the continuity of the totalPi

pressure requires that

- V +S •i V x (Ci x SP )

0 K(5.9)

B7 * (V x A + 6 V on r
P

Furthermore,

n x A - 0 on r * (5.10)
v

We also have the prescribed flux

f A • n ds - 6(t), (5.11)

r
v

and initial conditions

C(0) g o t 0 1o"
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Proceeding in the same way as in Part I, we define a space

- N-1 N I I2
W = 161 1 ,NI e (O p), A e H (a )}

nxA=o on r

n X A - (-n i)BV on r
p

With I(C,A)i defined by
W

(M , E,'.., ,A) I IV X A12dv + I f {YPi(V " 2

w v i Opi

+ IV X (9i x + PCi}dv,

and let

W - closure of W- in I I
W

w =w (0,A'), A' 6 v3 *

We note that in order to determine a unique solution to the elliptic system:

V x V x A- 0,

V * A 0,
n-1

n x A =0, on [ U r ]ur
tml Pi

it is now necessary to prescribe [Blank, Grad, Fredrichs, 19571 N - 1 fluxes

f A nds = (t)
rpi

on any N - 1 of the N plasma surfaces say r ***.,F , in addition to
p P H-1

(5.11).

With conditions on the equilibrium quantities identical to those of 13,

Part I, and the sami procedures as in 13 to 16, Part I. we may again establish

the existence and uniqueness of solutions to the following AZVP associated

with (5.6)-(5.11):

-22-
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(2) aN ,
at 2  1 1 >2, P

1 a((([1 A 1 N),

V(( t,. N),A) e w.

I N 1 N
(2) (4 (O),.**,E (O)A(0) - (9 ,,...,F 0 A 0 -A0) C-W

It N
_(- .....-.

t 4))= (11..,FN)0 e H, (5.13)

2where H (closure in L of PQp (W)), and A; is a solution of (6.13),

corresponding to fluxes 6(0) and 6 (0).
)

(3) f A nds =0, f A nds 0. (5.14)
r rv Pi

Theorem 5.2:

There exists a unique solution of the AEVP (5.12-5.14) such that

1 N(C(W '.40,&Nt),(t)) e 

,e cO (0,) H).

To the solution of AEVP we add a solution of the elliptic system

V x V x A' =0,

V * A' = 0,

n x A' -0 on U p i u r I

f A' * n ds = 6(t), f A' n ds - 6j(t),
r r
v Pi

where A' e V 3"

As before this solution has the property that
a2 1 N

(1) -- N( 1,W, 1 (t),1 [,.,N )>2,

at ( 2,P
1 N 1 N

+ a(( 06c,(t,A((t), ) =0

vla '0o,0NltlAlM) e W+ .

where

-23-



I N %N~ i-N
aCC ,o*o, ,A),(4 0,.., ,)) - . a(C ,A ),('d ,A)).

i.-1

(2) M( I(0),'OO*'NI(0I),A(0)) - 1 ,'""004N),A0

"N
a-t- ,)•.O.-(O)) ( ... 0) G H.

(3) f A • n ds =- (t); f A n ds = O(t).r v rp ij

If 0(t) is continuous, then

((&1ltl,.-.,&Nltll,Altl) 0 C([0,T) w+)
(1 . aN CO

(391 "0 N 6 C 0 ((0,T] : H).

Here

,(M *..., E ),2+ M ,(1OO..., N).2 + 1.2

N+ W 2,v
It can be shown that growth estimates of the form

Itil 2  4 C exp 20t
2,p

again hold, where 02 is the smallest positive real number such that

N 1 N2i-N
al&IM, ,A),(9 ,**,CN,A)) + 02 - li1 2,

2,P

)I 61 1 '19 N ,),All2"
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